N94-18340

3rd NASA Symposium on VLSI Design 1991 2.1.1

Automated ILA Design
for Synchronous Sequential Circuits

M. N. Liu, K. Z. Liu, G. K. Maki and S. R. Whitaker
NASA Space Engineering Research Center for VLSI System Design
University of Idaho
Moscow, Idaho 83843

Abstract - This paper presents an ILA architecture for synchronous sequential
circuits. This technique utilizes linear algebra to produce the design equations.
The ILA realization of synchronous sequential logic can be fully automated
with a computer program. A programmable design procedure is proposed to
fulfill the design task and layout generation. A software algorithm in the C
language has been developed and tested to generate 1 um CMOS layouts using
the Hewlett-Packard FUNGEN module generator shell.

1 Introduction

The design of sequential circuits presents a major task for most digital systems. As Very
Large Scale Integrated (VLSI) technology advances, developing an architecture to maxi-
mize the efficiencies of all the design steps becomes a major goal in the research of sequential
circuit design.

This paper introduces the Iterative Logic Array (ILA) as a new architecture for syn-
chronous sequential circuits. This architecture realizes a sequential circuit by replicating
simple basic modules. With an ILA architecture, a sequential machine can be built into a
very regular form automatically by a computer program with a single type of ILA mod-
ule. The simplicity and programmability of the ILA architecture significantly reduce the
design task in all stages of VLSI implementation, from logic design, circuit design, artwork
generation to verification.

2 ILA Architecture

Iterative Logic Arrays (ILA) have been described in the literature for quite some time [1,2].
An ILA circuit consists of an array of identical cells. Generally, as shown in Figure 1, each
ILA cell contains two sets of input signals. One set of inputs are applied in parallel, while
the other set of inputs are driven by adjacent cells. Signals normally propagate in only
one direction between cells, and outputs are derived only from the serial outputs of the
last cell.

In an ILA architecture for sequential circuits, the next state of each state variable is
generated by a slice of concatenated ILA cells. A sequential network is then constructed
by placing the ILA slices side by side.

21.2

Parallel Input
by by foy
. . —— ——————— = ,

Serial __,, 1 :__, | Serial

* . ! .
Input 21 can 3 Cell 2 A A X : Output

— ————— — =

] 1

Figure 1: A slice of ILA circuit
s S

i Y

Figure 2: Pass transistor 3-to-1 MUX ¢~ =+ ¢

" The basic cell'of an ILA sequential network consists of a %-to-1 multiplexes (MUX) and
a next state forming logic. A MUX cell has a select line S, its complement § and two data

inputs I, and I, and a logic function defined by Equation 1.

7Q=§*Il 'Fj*rIo e eeliasll . (1)

- The simplest way to implement the MUX function is to use a pass transistor circuit,
Basically, the pass transistor MUX, excluding level restoration logic, is a module of two
pass transistors, which functions as two simple switches. Figure 2 shows the circuit of
two inputs I, and I; and one output @ controlled by two control lines § and § which
are assumed to be asserted exclusively such that only one of two inputs I; and I, can be
passed to @ at a given time. -

Some details in pass transistor transmission characteristics are omitted here. Design
considerations, such as level restoration, are assumed to be handled by the output buffers.
The circuit design considerations have been discussed in [3,4,5].

3 Operational Function

In this research, the one-hot-code is utilized as the state assignment for a synchronous flow
table. With the one-hot-code assignment, there is a unique state variable corresponding
to each state. That makes it possible to express the design function using the states in
the flow table explicitly. A new form of mathematical expression is proposed next which
describes a flow table directly by flow table states. '

[N TR T T U]

3rd NASA Symposium on VLSI Design 1991 2.1.3

Definition 1 The set of operational functions is the behavior description of a synchronous
flow table of n rows and m columns. Each function is an equation for a nezt state S; in

the flow table.
Si=3slp (2)
p=1

where 3;, is an OR function of the states §;,VYj = 1,---,n, which have S; as the nezt entry
under input I,,.

It can be shown that there is a one-to-one mapping between the next state equation
K - Z fipIp (3)
p=1

and the operational function. With the one-hot-code state assignment, each 7-partition
can be expressed as

r={5;8}

which partitions a single state S; from the rest states S in the flow table. The number
of state variables is equal to the number of states. Next state 7-partitions can be formed
using known procedures [6]. If an 7-partition 7; is

7 = {515z --- 5;; S}

then it is well known that
fo=nnt+y2+--+u
On the other hand, Equation 2

m
S,' - Z SgpIp
p=1

can be mapped into a next state equation as Equation 3 if the one-hot-code assignment
is used where f;, are sum of the state variables y; corresponding to s;, in Equation 2.
Therefore, there is a one-to-one mapping between Equation 2 and Equation 3.

Since the operational function is a direct representation of the flow table, they can be
derived by inspection. For each state in the next state entry, there is a product term of
the present state and input state in the operational function. If a synchronous machine
is specified by a state diagram, the state diagram may need to be converted to a flow
table, though it will not be too hard for an experienced designer to derive the operational
functions from the state diagram directly.

Table 1 is the flow table of a state machine with four states. For example, State S,

appears as the next state entry of states S;, Sc and Sq under I;. Therefore, the operational
function for S, is

5, = (8 + S. + Sa) 1.

For State S, it appears as the next state under both I} and I;. So the operational
function for state S, is

Sy = Saly + (Sb + Se) .

2.14

L I, I,
Sa| S Si S
S: 1S S 3.
Se 1S S S
Sa|Sa Sa S4

Table 1: A synchronous flow table for the state diagram

The operational functions for state S, and S can be derived in the same way. All
together, the operational functions for Table 1 are as follows:

5. = (8 +8.+8)f,

8 = Suli+(S+ 80 (4)
Sc = (Sa+Si+30I

‘d = ('§a +'§'¢)jz + (§c + gd)fi

4 ILA Architecture for _§‘ync’;h’i‘6ii6us; geduéntiaiﬁf-
cuits

A simple regular ILA structure requires:

o The design equation is convertible to a pass logic function where each control variable
passes a single pass variable or a constant.

® The control variables are shared with each pass logic function.

With such a structure, if the pass variables in each equation are the same, the signal bus
to each slice of ILA circuit can be minimized to a single wire. - 7

If state S; is used as the control and S; appears as a next state under only one input
I,, then I, can be the only pass variable in the design equation for S;. For example, the
equation for S, in Equation 4 can be converted into a pass logic function with input I, as
a pass variable:

Ss = Sy(I1) + S.(I) + Su(Iy)

From the definition of the operational function in Equation 2, if S; appears only under
input I, then Equation 2 can be rewritten as:

S'{ = sipIp (5)

where s, is an OR function of the states S,k € {1,2,---,n}. Therefore, Equation 5 can
be written into:

Si=1, Z Gik Sk (6)
k=1

[IE A N T

3rd NASA Symposium on VLSI Design 1991 2.1.5

| | | I
6 H sn 1 _: L__ 1 s sn 1 _Ii
Q D flip flop D 3'1 Q ILA cell __i e :_ Q ILA cell ol
S1 s sn) ! s sn 0
-Q- S sn 1 ' | 1 S sn 1 Iq
c——— . -—— — —
Q D flip flop D Sn Q ILA cell 0__: o0 :_Q ILA cell ol
Sn s sn ! ! s sn 0

51 kN Sn Sn
/ A A A
Figure 3: The general ILA structure for synchronous logic
or in a form of pass logic expression:
S; = Si(galy) + S1(--- Sk(giey) + Su(- - (Salgindp) + 5n(0) - --). (7)

where
g { 1 if S; is the next state of Si under I,
ik —

0 if S; is not the next state of S; under I,

Theorem 1 The architecture depicted in Figure § is a proper model for a synchronous
sequential circust.

Proof: The proof follows directly from one-hot-code assignment that one and only one
state variable are active at a time and Equation 6 contains only one input state. Clearly,
the architecture realizes Equation 6 by placing a multiplexer under S where g;x =1 and
a wire under S, where g; = 0.
O

To accomplish the ILA structure, S; must be restricted to appear in a flow table under
only one input I,. If a state S; appears as a next state under both I, and I,, S; has to be
split into two different states. For example, in Table 1, state 5, appears under both input
I, and I,. It is necessary to distinguish S, with two unique states Sy and Sy where S,
represents the S, under I; and S, represents the S under I;. Similarly, state S needs to
be split into S4; and Sg3. A revised flow table can then be obtained by splitting all states
under different columns. Table 2 shows the result. o

After updating the flow table, the operational function for each state can be derived
in the same way as before. For example, S, is the state under I; only. Therefore, its
operational function is

Sy =0+ Syl + S, + S.I, + 0+ 0.

2.1.6

L L L
Sa | S Saz S
Sbl Sa sz Sc
SbZ Sa Sb2 Sc
Sc Sa Sb2 Sd3
Sa|S. Sa Si
Sis | Sa Siz Sa

Tg,blg 2: A revised flow table

All other opemtlona.l functxons are a.lso in the same form The results are shown as follows;

S =0 +5b111 +S!>2I1+SI1+ Sd2I1+ Sasly
Su—SIl+0 +0 +0 +0 +0
sz— 0 + SblIZ + Spalz + S I+ 0 +0
S, —SI3+.S'(,1I3+.5'52I3 0 +0 +0
Sdg-—SI2+0 +0 + 0 +542I2+Sd312
S3=0" " 40 +0 + 8L+ Syl

Sphttmg states in a flow table allows all of the pass variables in an operational functlon

to be the same. The disadvantage of splitting states is that it geﬁgrates a.ddltxona;[:
state equations. Increasing the number of equations implies increasing the area in sﬂxcon’
It is a trade off by gaining programmability and regularity pf the ILA realization versus

cost. An automated sequential circuit design will 51gnxﬁcantly reduce the design effort and
speedup the process of unplementatmn

5 The Matﬁx Expi'ession

The operational functions discussed in prevmus sections can be efﬁc:ently expressed with

matrices. The matrix will also help to implement the function in silicon. With Equatlon 6,
a synchronous sequentxal circuit can be expressed with a set of equatnms* B e

S‘1 - Ip Z glksk
k=1

Sn = Iq Zgnksk

k=1
Such a set of equations are equivalent to a matrix expression:

S=AxGxS (8)

3rd NASA Symposium on VLSI Design 1991

where matrices S are S are column vectors
Sy
S,

17,1
m

~

Sn

2.1.7

matrix A is a diagonal matrix with I, in the i row/column if the next state 5; is under

I,
(L

g
Il

and matrix G is defined as

(gu

!
il

\ gnl
in which

Gik =

For example, the matrix expression for the flow table in Table 2 is:

(8%) (5 o 0 0 0
Sbl 0I1000
S |0 0oL oo
S| 1o o0 o0 Lo
$a 00 0 0 I,
\ S) \0 0 0 00

[0
1
0
1

1
\ 0

I;)

9in \

Gnn

OO O

OO - O =

1 if S; is the next state of Si
0 if S;is not the next state of Sy

- O O

-

;|
0
0

0
1

1

(S.)
Sh1
Si2
Se
Sa1

\ Saz /

The matrix A and G are directly related to hardware structure. As in the ILA realiza-
tion, there will be a slice of the ILA circuit for each design equation, as shown in Figure 3.
Now each element at the diagonal of the matrix A indicates the input state to the ILA
slice. Each row of matrix G reveals the location of ILA cells in the slice. If the element
gir is 1, then an ILA cell will be placed under the control of state S in the slice of the
ILA circuit for next state S;. If gi is equal to 0, a wire will be placed in that position. An
example of the ILA realization will be shown in next section.

2.1.8

6 Design Procedure

From the discussion in the previous section, the design of a synchronous machine can be
completely automated by programming an ILA cell or a wire into a pre-interconnected
layout floor. It allows the physical layout to be designed and stored in computer as a set
of building blocks. Then for each instance of synchronous sequential logic, an ILA circuit
can be implemented by placing ILA cells according to the corresponding G matrix. The

A matrix will indicate the inferconnection to input states.

From the layout point of view, a wire can be considered as a cell as well. Hence
there will be two cell types in an ILA realization. Let the ILA cell which performs the
multiplexer function be defined as a MUX cell. Let a wire be defined as an {LA ZERO
cell. Now the computer program can search the G matrix and place a MUX cell once &
“1” is encountered or a ZERO cell once a “0” is encountered. The schematic of a MUX
cell and a ZERO cell are shown in Figure 4 (b) and (¢) respectively.

Procedure 1 Synchronous ILA network design procedure.

Step 1. For a Qyﬁcﬁronous machine specified by a stale diagram, convert it into & §ghi-
chronous flow table (state table).]

Step 2. If a state appears as a nezt state under more than one input column, split the
state and give a unique name to the state under each input column. Repeat this step
until all states under one column are distinguished from states under other columins.

Step 3. Generate the A matriz by setting the diagonal element in the i column to be I,
if state S; appears as a nezt state in the flow table under I,.

Step 4. Generate the G matriz such that gij 38 “17 if S; is the nezt state of S;, gi; = 0
otherwise.

Step 5. Map the matrices to the layout floor. Place a MUX cell under the control of Sk
in the slice of the ILA circuit for the nezt state 5; if gir = 1 or place a ZERO cell if
g = 0.

Step 8. Connect Input-1 of the last ILA cell in the slice of the ILA circuit for S; to I,

which is the diagonal element of matriz A in the i** row. Connect Input-0 of the last
ILA cell to the level of logic low (VSS).

For example, for a synchronous machine specified a flow table shown in Table 1, it
needs to find those states which are under more than one input state and fo split them.
The result of splitting is shown in Table 2. The matrices of the flow table can then be
generated. For instance, S, is a next state under I, of state Sh1, Sb2, Se, Sq2 and Syz3. Then
I, becomes the diagonal element a;; in matrix A; the 1t row of matrix G will have a “0”
in the first column since the next state of S, under I, is not S, and have a “1” in the rest
of columns. The A matrix and G matrix can then be mapped into an ILA network. The
result is shown in Figure 4 (a) where each ILA cell is represented by a box. The boxes in
dash line represent the ZERO cell (g;; = 0) and boxes in solid line represent the MUX cell

2.1.9

2 2 2 2 2 %
= o N P O L
R rT P
1 i 1 i 1 h
1) ' 1 1 1
— P———t p— ’
- [, L = -
! T r T
1 | 1 i) i
1) 1 ! 1)
- R | ——— _ _
! T T P
) y 1) i)
') i 1 1 '
—l - —t— —
Lim - — bm - — [
[t I 1 O I A I
o t 1) 1)
=} | t 1] |
-]) I 1 1
— — t -
m..o Le e L——— _——
QO I O T s O O N R (I N SN R U S
D L] o \ ol [] [} [}
[[a] 1 O i 1) 1
w m ' m 1 ' 1)
N - 9 oS Al B N
5 | |
s ey | e T
: s CIEE [T |
7 LI w B — .
M.. [r|||—._ [
3
“n 52 "L i i |
= A L L] L
- A] 3l .])
= 95} %) W %5) wn %)
g~
oy
™

(a) Synchronous ILA network

T f

1___1

S SN

-

(c) ILA cell - zero

(b) ILA cell - mux

Figure 4: The ILA network for the example

2.1.10

(9ij =1). As the first row of matrix G is “011111”, the top slice of the ILA for S, consists
of one ZERO cell on the left and five MUX cells. Again, from matrix A, the input of the
last ILA cell is tied to I; and VSS.

As mentioned before, a major advantage of the design approach in Procedure 1 is that
it allows a hierarchical layout design. The high level layout, including interconnections, is
identical for all synchronous flow tables. When the function of a flow table changes, the
only thing one has to do is to instruct the computer to re-program the position of MUX
cell and ZERO cell. Of course, the input state to each slice of the ILA may need to be
changed as well. : : ' o

7 Automated Synchronous ILA Design System

The ILA design procedure has bgenco&ed into éémpuié; ﬁfogréms and ported to Hewlett-
Packard FUNGEN layout tool. The automatic synchronous ILA design system consists of
an HP FUNGEN shell and three major subsystems: '

¢ Sequential Logic Processor
s FUNGEN Configuration Code
® Library of Layout Building Blocks.

The Sequential Logic Processor is an ILA circuit topology generator which receives the
specification of synchronous sequential machine and converts it into a form specified by
FUNGEN Configuration Code. There are three phases in implementing the Sequential
Logic Processor: flow table revising, matrices generation and FGNRC formation. The first
two phases follows closely to the step 2, step 3 and step 4 in Procedure 1. The third phase
is to generate parameters of device modules pre-defined by FUNGEN Configuration Code
and write them into a FGNRC file. By modifying the last phase, the program can be
ported to any other artwork generator systems.

The FUNGEN Configuration Code describes the artwork architecture and defines the
modules in the FGNRC file. The FUNGEN Configuration Code is written in Fungen
Configuration Language (FCL), a subset of C language with a number of functions for
Hewlett-Packard TRANTOR database generation. The overall ILA architecture and a set
of ILA configuration modules are specified in the FUNGEN Configuration Code.

When running the FUNGEN shell, the system invokes the FUNGEN Configuration
Code, FGNRC file and Layout Library, and automatically generates a layout artwork
by placing pre-designed ILA cells and peripheral buffers. It also labels all of blocks in
accordance with the FUNGEN Configuration Code and FGNRC file. Figure 5 illustrates
the block diagram of the ILA design system and the algorithm of Sequential Logic Processor
implementation.

" g———

W Tme |

3rd NASA Symposium on VLSI Design 1991

SYNCHRONOQUS FLOW TABLE

Y

FUNGEN

Configuratian
Code

Library
Building

Blocks

For all States

<>

YES

Modify Colugs

Add Rows
J
For All States
YES @ NO
g(iJj)=1 g(i,j)=0
L i
YES NO
DONE ?
y
FGNRC data

HEWLETT-PACKARD FUNGEN

ARTWORK

Figure 5: Block diagram of the automatic ILA design system

2.1.11

2.1.12

8 Summary

This paper presents an ILA architecture for synchronous sequential circuits. The design
procedure is also proposed to realize synchronous sequential ILA circuits by programming
the placement of two basic cells, a 2 to 1 multiplexer or a cell of metal wires. The inter-
connections between ILA cells is only a single route line in both the X and Y dimension.
The simplicity and programmability of the procedure significantly reduce the effort in all
stages of synchronous sequential circuit implementation, from logic design, circuit design,
physical layout to verification.

The ILA design procedure utilizes matrices expression to represent design equations.
One of the advantages of using matrices is that they directly indicate the placement of the
ILA cells in the realization. An ILA design tool for synchronous sequential circuits has
been implemented into a computer system which automatically generates layout artwork
from a synchronous sequential machine specification.

References

[1] C. Roth, Fundamentals of Logic Design, 3rd Ed,. St. Paul, Minn., West Publishing,
1985.

[2] D. Givone, Introduction to Switchiiig Circust Theory, McGraw-Hill, Inc., 1970.

[3] S. Whitaker, “Design of Asynchronous Sequential Circuits Using Pass transistors,”
Ph.D Dissertation, University of Idaho, Feb. 1988.

[4] S. K. Gopalakrishnan and G. K. Maki, “VLSI Asynchronous Sequential Circuit De-
sign”, ICCD, Sept, 1990, pp. 238-242.

[5] S. Whitaker and G. Maki, “Pass-Transistor Asynchronous Sequential Circuits”, IEEE
JSSC, Vol.24, No.1, Feb. 1989, pp. 71-78.

[6] W. W. Stiehl, “A Mathematical Basis for the Optimal Synthesis of Finite State Ma-
chines.” Master of Science Thesis, University of Idaho, Moscow, Idaho, June, 1986.

